EconPapers    
Economics at your fingertips  
 

Efficient Routines for Obtaining Radiation View-Factor for Non-Uniform Horizons

Tariq Muneer and Stoyanka Ivanova
Additional contact information
Tariq Muneer: School of Engineering and Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
Stoyanka Ivanova: Civil Engineering and Geodesy, University of Architecture, 1164 Sofia, Bulgaria

Energies, 2020, vol. 13, issue 10, 1-17

Abstract: There are a large number of engineering applications wherein estimation of radiation exchange between surfaces is required. One important part of the latter procedure is to obtain the so-called ‘view factor’ of the emitter–receiver combination. The principal aim of this article is to present finite-element based procedures to obtain view factor with good time efficiency. As such routines presented here compute the view factor between a non-uniform emitter field and the receiving surface. An example of this is ground-reflected solar radiation to thermal or photovoltaic collectors, the foreground itself being composed of surfaces that have wide-ranging reflectivities. Four routines have been presented here: one based on a uniform grid for emitting and receiving surfaces using a brute force approach (Uniform Populous Grid (UPG)), and another that used non-uniform grid for the receiving surface, where cells’ sizes increased in arithmetic progression as one withdraws from the common edge (Non Uniform Grid Populous (NUGP)). The last two routines used combinations of the first two approaches with Monte-Carlo approach (Uniform Grid Monte-Carlo (UGMC) and Non Uniform Grid Monte-Carlo (NUGMC)). It was found that the NUGP algorithm was the most efficient to reduce the calculation error for the same number of computations, it was about 450 times (430 for non-uniform reflectivity) more accurate than UPG, 160 (125) times more than UGMC and 70 (60) times more than NUGMC. Finally a comparison of advantages and disadvantages of all four considered routines was added, using the following criteria: ease of programming, computational execution time, accuracy of results obtained, and predictability of the errors.

Keywords: view factor; reflected radiation; finite element analysis; solar energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/10/2551/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/10/2551/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:10:p:2551-:d:359591

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2551-:d:359591