Ground Fault Detection Using Hybrid Method in IT System LVDC Microgrid
Kyung-Min Lee and
Chul-Won Park
Additional contact information
Kyung-Min Lee: Department of Electrical Engineering, Gangneung-Wonju National University, 150 Namwon Ro, Gangwon, Wonju 26403, Korea
Chul-Won Park: Department of Electrical Engineering, Gangneung-Wonju National University, 150 Namwon Ro, Gangwon, Wonju 26403, Korea
Energies, 2020, vol. 13, issue 10, 1-12
Abstract:
Low voltage direct current (LVDC) microgrid systems have many advantages over low voltage alternating current (LVAC) systems. Furthermore, LVDC microgrids are growing in use because they are easy to link to distributed energy resources (DER) and energy storage systems (ESS), etc. Currently, IT system LVDC microgrids are widely used in direct current (DC) railways, hospitals, photovoltaic (PV) systems, and so on. When a ground fault occurs in an IT system LVDC microgrid, the ground fault may not be detected because the fault current is very small and there is no current path. In this paper, ground fault detection is proposed using a hybrid method that comprises pulsation signal generator injection and detailed coefficients of discrete wavelet transform (DWT). The LVDC microgrid was modeled and simulated using power systems computer-aided design (PSCAD). In addition, the proposed hybrid method was implemented using MATLAB’s wave menu, a script m-file, and the PSCAD library. The proper threshold was selected and tested by fault resistance change and load variation. In order to verify the superiority of the proposed hybrid method, a comparative study with the conventional method was performed. The results of various simulations show that the proposed hybrid detection method has normal operation and accurately and rapidly detects ground faults.
Keywords: detailed coefficient; DER; ESS; ground fault detection; hybrid method; LVDC microgrid; IT system; PSCAD (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/10/2606/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/10/2606/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:10:p:2606-:d:360885
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().