EconPapers    
Economics at your fingertips  
 

Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment: Experimental and Numerical Assessments

Victor Lohmann and Paulo Santos
Additional contact information
Victor Lohmann: ISISE, Department of Civil Engineering, University of Coimbra, Pólo II, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal
Paulo Santos: ISISE, Department of Civil Engineering, University of Coimbra, Pólo II, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal

Energies, 2020, vol. 13, issue 11, 1-25

Abstract: Buildings are seeking renewable energy sources (e.g., solar) and passive devices, such as Trombe walls. However, the thermal performance of Trombe walls depends on many factors. In this work, the thermal behavior and energy efficiency of a Trombe wall in a lightweight steel frame compartment were evaluated, making use of in situ measurements and numerical simulations. Measurements were performed inside two real scale experimental identical cubic modules, exposed to natural exterior weather conditions. Simulations were made using validated advanced dynamic models. The winter Trombe wall benefits were evaluated regarding indoor air temperature increase and heating energy reduction. Moreover, a thermal behavior parametric study was performed. Several comparisons were made: (1) Sunny and cloudy winter week thermal behavior; (2) Office and residential space use heating energy; (3) Two heating set-points (20 °C and 18 °C); (4) Thickness of the Trombe wall air cavity; (5) Thickness of the thermal storage wall; (6) Dimensions of the interior upper/lower vents; (7) Material of the thermal storage wall. It was found that a Trombe wall device could significantly improve the thermal behavior and reduce heating energy consumption. However, if not well designed and controlled (e.g., to mitigate nocturnal heat losses), the Trombe wall thermal and energy benefits could be insignificant and even disadvantageous.

Keywords: passive solar; Trombe wall; light steel frame; thermal behavior; energy efficiency; Mediterranean climate; office use; residential use; heating set-points (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/11/2744/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/11/2744/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:11:p:2744-:d:364965

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2744-:d:364965