EconPapers    
Economics at your fingertips  
 

Ultra-Short-Term Photovoltaic Power Prediction Model Based on the Localized Emotion Reconstruction Emotional Neural Network

Yufei Wang, Li Zhu and Hua Xue
Additional contact information
Yufei Wang: College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
Li Zhu: College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
Hua Xue: College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China

Energies, 2020, vol. 13, issue 11, 1-21

Abstract: Due to the intermittency and randomness of photovoltaic (PV) power, the PV power prediction accuracy of the traditional data-driven prediction models is difficult to improve. A prediction model based on the localized emotion reconstruction emotional neural network (LERENN) is proposed, which is motivated by chaos theory and the neuropsychological theory of emotion. Firstly, the chaotic nonlinear dynamics approach is used to draw the hidden characteristics of PV power time series, and the single-step cyclic rolling localized prediction mechanism is derived. Secondly, in order to establish the correlation between the prediction model and the specific characteristics of PV power time series, the extended signal and emotional parameters are reconstructed with a relatively certain local basis. Finally, the proposed prediction model is trained and tested for single-step and three-step prediction using the actual measured data. Compared with the prediction model based on the long short-term memory (LSTM) neural network, limbic-based artificial emotional neural network (LiAENN), the back propagation neural network (BPNN), and the persistence model (PM), numerical results show that the proposed prediction model achieves better accuracy and better detection of ramp events for different weather conditions when only using PV power data.

Keywords: PV power prediction; localized emotion reconstruction emotional neural network (LERENN); chaotic; extended signals; emotional parameters (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/11/2857/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/11/2857/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:11:p:2857-:d:367016

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2857-:d:367016