Efficient History Matching of Thermally Induced Fractures Using Coupled Geomechanics and Reservoir Simulation
Misfer Almarri
Additional contact information
Misfer Almarri: Saudi Aramco, Dhahran 34814, Saudi Arabia
Energies, 2020, vol. 13, issue 11, 1-43
Abstract:
Waterflooding is a common recovery method used to maintain reservoir pressure and improve reservoir oil sweep efficiency. However, injecting cold water into a reservoir alters the state of in-situ formation stress and can result in the formation fracturing. In other words, it can cause the initiation and growth of thermally induced fractures (TIFs), even when the original fracture propagation pressure is not exceeded. TIFs can cause non-uniform distribution of the fluid flow in wellbores, a reduction in sweep efficiency, and early water breakthrough in nearby production wells. Modelling and history matching workflows that consider the dynamic nature of the TIF problem are critical. These workflows improve and validate reservoir and geomechanical models, identify and confirm observed TIF onset and propagation periods, and provide a history-matched sector model with the rock mechanical and thermal properties and stress gradients that can be used with confidence for subsequent studies. Modelling and the underlining assumptions of fluid flow in the TIF and reservoir matrix, as well as geomechanical changes due to cooling of the reservoir during injection, are detailed below. A 3D reservoir simulator coupled with 2D finite element TIF and geomechanical models were used to manually history match an injector (NI6) in the N Field sector reservoir model in which a TIF was observed. In this study, history matching workflows were developed to consider the dynamic nature of TIF development during waterflooding. The reservoir and geomechanical models were improved and validated via the observed TIF onset and propagation periods. The history-matched models produced can be used with confidence in subsequent studies. The practical workflows and guidelines developed here can be used in waterflooding operations during the modelling, design, and planning stages. The novelty of this study is the coupling approach of different complex processes done in order to capture dynamic changes during waterflooding operations. A similar history matching study could not be found in the literature.
Keywords: fluid flow; reservoir modelling; waterflooding; Thermally Induced Fracture; History matching; finite element; reservoir simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/11/3001/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/11/3001/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:11:p:3001-:d:369948
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().