EconPapers    
Economics at your fingertips  
 

Quasi-3D Thermal Simulation of Integrated Circuit Systems in Packages

Konstantin O. Petrosyants and Nikita I. Ryabov
Additional contact information
Konstantin O. Petrosyants: Higher School of Economics, National Research University (Moscow Institute of Electronics and Mathematics), Moscow 123458, Russia
Nikita I. Ryabov: Higher School of Economics, National Research University (Moscow Institute of Electronics and Mathematics), Moscow 123458, Russia

Energies, 2020, vol. 13, issue 12, 1-17

Abstract: The problem of thermal modeling of modern three-dimensional (3D) integrated circuit (IC) systems in packages (SiPs) is discussed. An effective quasi-3D (Q3D) approach of thermal design is proposed taking into account the specific character of 3D IC stacked multilayer constructions. The fully-3D heat transfer equation for global multilayer construction is reduced to the set of coupled two-dimensional (2D) equations for separate construction layers. As a result, computational difficulties, processor time, and RAM volume are significantly reduced, while accuracy can be provided. A software tool, Overheat-3D-IC, was developed on the base of the generalized Q3D package numerical model. For the first time, the global 3D thermal performances across the modern integrated circuit/through-silicon via/ball grid array (IC-TSV-BGA) and multi-chip (MC)-embedded printed circuit board (PCB) packages were simulated. A ten times decrease of central processing unit (CPU) time was achieved as compared with the 3D solutions obtained by commercial universal 3D simulators, while saving the sufficient accuracy. The simulation error of maximal temperature T MAX determination for different types of packages was not more than 10–20%.

Keywords: LSI packages; system in package (SiP); thermal analysis; 3D simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/12/3054/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/12/3054/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:12:p:3054-:d:370898

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3054-:d:370898