EconPapers    
Economics at your fingertips  
 

Rapid Wear Modelling in a Slurry Pump Using Soft 3D Impeller Material

C. Jiang, B. A. Fleck and M. G. Lipsett
Additional contact information
C. Jiang: Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
B. A. Fleck: Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
M. G. Lipsett: Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Energies, 2020, vol. 13, issue 12, 1-16

Abstract: Slurry transport systems are often limited in run length by the life of the pump internals, especially the impeller. The present work investigated abrasive wear of the impeller of a Hayward Gordon XR2(7) Torus Recessed Impeller slurry pump in a flow loop. The stock stainless steel impeller was replaced by a set of plastic test impellers with the same nominal geometry, fabricated by additive manufacturing (3D printing). A parametric set of abrasive wear experiments was conducted at five pump rotational speeds and three solid concentrations of garnet slurry in a pipe flow loop. Pump performance tests were conducted using impellers with progressive wear conditions, to investigate how a worn impeller affects hydraulic power delivery. A parabolic fit was imposed to describe the relationship between head and flow rate, and an empirical model was proposed to predict the pump head with damaged impellers. When the rotational speed is high, the damaged impeller has a larger effect on the pump’s performance than when the rotational speed is low. The head difference between the undamaged impeller and a 7.62%-mass-loss damaged impeller was 1.5 m at 1750 rpm rotational speed, however, for 850 rpm, the head difference was 1 m. Implications for pump diagnostics in other types of systems are discussed. This experiment gives a method for rapidly assessing wear locations, and provides a tool to predict wear rates on harder materials if scaling parameters are available. This first attempt at a scaling law is not reliable enough to accurately predict the wear rate for specific conditions, but shows the relative wear as a function of pertinent parameters.

Keywords: erosive wear; impeller wear; pump performance; slurry pump (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/12/3264/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/12/3264/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:12:p:3264-:d:375663

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3264-:d:375663