Laboratory Validation of Integrated Lighting Systems Retrofit Performance and Energy Savings
Jordan Shackelford,
Paul Mathew,
Cynthia Regnier and
Travis Walter
Additional contact information
Jordan Shackelford: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Paul Mathew: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Cynthia Regnier: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Travis Walter: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Energies, 2020, vol. 13, issue 13, 1-20
Abstract:
Light-emitting diodes (LED) fixtures and lamps have emerged as leading technologies for general illumination and are a well-established energy efficiency retrofit measure in commercial buildings (from around 2% of installed fixtures and lamps in 2013 to 28% by 2020). Retrofit approaches that integrate elements, such as networked controls, daylight dimming, and advanced shade technologies lag in comparison. Integrated retrofits have been shown to increase savings over single end-use retrofits, but are perceived as higher complexity and risk. More validation of integrated lighting system performance is needed. This study presents results from laboratory testing of three packages combining fixtures, networked controls, task tuning, and daylight dimming, advanced shades, and lighting layout changes. We characterize performance in perimeter open-office zones, finding energy savings from 20% for daylight dimming and automated shades (no LED retrofit) to over 70% for LED retrofits with advanced controls and shades or lighting layout changes. We present some implementation details, including lessons learned from installation and commissioning in the laboratory setting. We also discuss cost-benefit analysis approaches for the types of packages presented, including the need to quantify and incorporate energy and non-energy benefits for advanced shades packages, which enhance occupant comfort but add significant cost.
Keywords: integrated lighting retrofits; advanced lighting controls; daylighting; LEDs; commercial buildings; energy savings; automated shading systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/13/3329/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/13/3329/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:13:p:3329-:d:378259
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().