Experimental Study of Premixed Gasoline Surrogates Burning Velocities in a Spherical Combustion Bomb at Engine Like Conditions
Miriam Reyes,
Francisco V. Tinaut and
Alexandra Camaño
Additional contact information
Miriam Reyes: Department of Energy and Fluid-Mechanics Engineering, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain
Francisco V. Tinaut: Department of Energy and Fluid-Mechanics Engineering, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain
Alexandra Camaño: Department of Energy and Fluid-Mechanics Engineering, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid, Spain
Energies, 2020, vol. 13, issue 13, 1-15
Abstract:
In this work are presented experimental values of the burning velocity of iso-octane/air, n-heptane/air and n-heptane/toluene/air mixtures, gasoline surrogates valid over a range of pressures and temperatures similar to those obtained in internal combustion engines. The present work is based on a method to determine the burning velocities of liquid fuels in a spherical constant volume combustion bomb, in which the initial conditions of pressure, temperature and fuel/air equivalence ratios can be accurately established. A two-zone thermodynamic diagnostic model was used to analyze the combustion pressure trace and calculate thermodynamic variables that cannot be directly measured: the burning velocity and mass burning rate. This experimental facility has been used and validated before for the determination of the burning velocity of gaseous fuels and it is validated in this work for liquid fuels. The values obtained for the burning velocity are expressed as power laws of the pressure, temperature and equivalence ratio. Iso-octane, n-heptane and mixtures of n-heptane/toluene have been used as surrogates, with toluene accounting for the aromatic part of the fuel. Initially, the method is validated for liquid fuels by determining the burning velocity of iso-octane and then comparing the results with those corresponding in the literature. Following, the burning velocity of n-heptane and a blend of 50% n-heptane and 50% toluene are determined. Results of the burning velocities of iso-octane have been obtained for pressures between 0.1 and 0.5 MPa and temperatures between 360 and 450 K, for n-heptane 0.1–1.2 MPa and 370–650 K, and for the mixture of 50% n-heptane/50% toluene 0.2–1.0 MPa and 360–700 K. The power law correlations obtained with the results for the three different fuels show a positive dependence with the initial temperature and the equivalence ratio, and an inverse dependence with the initial pressure. Finally, the comparison of the burning velocity results of iso-octane and n-heptane with those obtained in the literature show a good agreement, validating the method used. Analytical expressions of burning velocity as power laws of pressure and unburned temperature are presented for each fuel and equivalence ratio.
Keywords: iso-octane; n-heptane; toluene; surrogate fuels; burning velocity; combustion bomb (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/13/3430/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/13/3430/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:13:p:3430-:d:379745
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().