Distributed Machine Learning on Dynamic Power System Data Features to Improve Resiliency for the Purpose of Self-Healing
Miftah Al Karim,
Jonathan Currie and
Tek-Tjing Lie
Additional contact information
Miftah Al Karim: The Lines Company, Te Kuiti 3910, New Zealand
Jonathan Currie: Rocket Lab, Auckland 1060, New Zealand
Tek-Tjing Lie: School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand
Energies, 2020, vol. 13, issue 13, 1-20
Abstract:
Numerous online methods for post-fault restoration have been tested on different types of systems. Modern power systems are usually operated at design limits and therefore more prone to post-fault instability. However, traditional online methods often struggle to accurately identify events from time series data, as pattern-recognition in a stochastic post-fault dynamic scenario requires fast and accurate fault identification in order to safely restore the system. One of the most prominent methods of pattern-recognition is machine learning. However, machine learning alone is neither sufficient nor accurate enough for making decisions with time series data. This article analyses the application of feature selection to assist a machine learning algorithm to make better decisions in order to restore a multi-machine network which has become islanded due to faults. Within an islanded multi-machine system the number of attributes significantly increases, which makes application of machine learning algorithms even more erroneous. This article contributes by proposing a distributed offline-online architecture. The proposal explores the potential of introducing relevant features from a reduced time series data set, in order to accurately identify dynamic events occurring in different islands simultaneously. The identification of events helps the decision making process more accurate.
Keywords: self-healing grid; machine-learning; feature extraction; event detection (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/13/3494/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/13/3494/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:13:p:3494-:d:381071
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().