Thermophilic Co-Fermentation of Wood Wastes and High in Nitrogen Animal Manures into Bio-Methane with the Aid of Fungi and its Potential in the USA
John G. Ingersoll
Additional contact information
John G. Ingersoll: ECOCORP, 1211 South Eads Street, Suite 803, Arlington, VA 22202, USA
Energies, 2020, vol. 13, issue 16, 1-16
Abstract:
A novel process is proposed whereby wood wastes from forest tree mortalities and improved forest management are co-digested with high in nitrogen content animal manures to yield bio-methane along with nitrogen, phosphorous, and potassium bio-fertilizers. The process mimics the well-known wood conversion to methane process in lower termites but relies on thermophilic fungi, bacteria, and archaea instead. It is based on the modified state-of-the art two-step, hyperthermophilic (70 °C) hydrolysis and thermophilic (55 °C) fermentation, dry (30% TS), anaerobic digestion technology with a high organic loading and shortened retention time. The process is augmented with the thermophilic fermentation of carbon dioxide in the biogas into secondary bio-methane by employing hydrogen produced via wind-powered electrolysis. The entire process comprised of five distinct steps is designated as “Wood to Methane 3 + 2”. An industrial type, standardized plant unit has been developed that can be employed in a modular fashion. The implementation of these plant units across the US, utilizing the estimated waste wood potential along with 3/4 of the produced poultry and pig manure, would generate the equivalent of 2/3 of transportation fuel consumption and would supply about 11% of current US energy use per annum. The produced bio-methane can be cost-competitive only if it is employed as a transportation fuel to replace fossil gasoline and diesel fuels. The required annual investment over a 20-year period is well within the means of the US economy in a public–private development partnership.
Keywords: thermophilic bacteria; archaea and fungi; wood; fermentation; nitrogen-rich animal manures; modular industrial plant design; bio-methane; carbon dioxide; hydrogen; bio-fertilizers; wind power; water electrolysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/16/4257/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/16/4257/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:16:p:4257-:d:400181
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().