Multidisciplinary Characterization of Unconventional Reservoirs Based on Correlation of Well and Seismic Data
Weronika Kaczmarczyk and
Małgorzata Słota-Valim
Additional contact information
Weronika Kaczmarczyk: Oil and Gas Institute—National Research Institute, 25A Lubicz Str., 31-503 Kraków, Poland
Małgorzata Słota-Valim: Oil and Gas Institute—National Research Institute, 25A Lubicz Str., 31-503 Kraków, Poland
Energies, 2020, vol. 13, issue 17, 1-19
Abstract:
Combinatorial analysis of key petrophysical parameters can provide valuable information about subsurface hydrocarbon reservoirs. This is particularly important for reservoirs with unconventional rock formations that, due to the low permeability, need to be stimulated by fracturing treatment to provide fluid flow to the exploitation wellbore. In this article, based on data from unconventional shale formations (N Poland), we outline how independent sets of elastic and petrophysical parameters and other reservoir features can be co-analyzed to estimate the fracture susceptibility of shale intervals, which are characterized by a high total organic carbon (TOC) content and high porosity. These features were determined by analysis of each horizon’s elastic and mineralogical brittleness index (BI). These two variants were calculated first in 1D; integrated with the seismic data and finally compared with other parameters such as acoustic impedance, ratio of compressional and shear wave velocities, porosity, and density; and then presented and analyzed using cross plots that highlighted the key relationships between them. The overall BI trends were similar in both horizontal and vertical directions. The highest BI values were observed in the southeast of the analyzed area (Source I) and in the southeast and northwest of the area (Source II). These results can form the basis for predictive modeling of reservoir properties aiding effective reservoir exploration.
Keywords: shale reservoir; elastic properties; brittleness; rock physics; brittle spot identification (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/17/4413/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/17/4413/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:17:p:4413-:d:404576
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().