EconPapers    
Economics at your fingertips  
 

Theoretical Comparison of Test Performance of Different Pulse Decay Methods for Unconventional Cores

Guofeng Han, Xiaoli Liu and Jin Huang
Additional contact information
Guofeng Han: Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Xiaoli Liu: State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Jin Huang: State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

Energies, 2020, vol. 13, issue 17, 1-20

Abstract: Various pulse decay methods are proposed to test tight cores. These methods can be divided into three types. This study compares the performance of these methods to test the permeability of unconventional cores in terms of homogeneous cores, dual-medium cores, and gas adsorption, including the pressure equilibrium time, possible errors caused by conventional analysis methods, and reflections on the characteristics of dual-media. Studies shows that the two test methods with an antisymmetric relationship in the boundary conditions have basically identical test performance. When testing homogeneous cores, regardless of whether the gas is adsorptive or not, the pressure equilibrium time of the first type of method is approximately half of that of the second type of method. The dual-medium parameters seriously affect the pressure equilibrium time of different methods, which may cause the difference of order of magnitude. For homogeneous cores, the permeability errors of the first and second types of methods caused by porosity errors are similar and larger than that of the third type of method. For dual media, the fracture permeability obtained by the third type of method using the conventional analysis method may differ from the actual value by tens of times. No method can significantly eliminate the sorption effect. When the core is a dual-medium, only the pressure curves of the upstream positive-pulse method, downstream negative-pulse method and one-chamber method can reflect the characteristics of dual media. The pressure derivative of the one-chamber method cannot reflect the characteristics of dual media at the early time. The pressure derivative of the second type and the upstream positive-pulse downstream negative-pulse method can reflect the complete characteristics of dual media, but their pressure derivative of the constant-slope segment is small, and the interporosity flow parameter may not be identified.

Keywords: pulse decay method; gas adsorption; dual media; unconventional core (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/17/4557/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/17/4557/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:17:p:4557-:d:407986

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4557-:d:407986