Nonlinear Optimization of Turbine Conjugate Heat Transfer with Iterative Machine Learning and Training Sample Replacement
Sandip Dutta and
Reid Smith
Additional contact information
Sandip Dutta: Mechanical Engineering Department, Clemson University, Clemson, SC 29634, USA
Reid Smith: Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801, USA
Energies, 2020, vol. 13, issue 17, 1-23
Abstract:
A simple yet effective optimization technique is developed to solve nonlinear conjugate heat transfer. The proposed Nonlinear Optimization with Replacement Strategy (NORS) is a mutation of several existing optimization processes. With the improvements of 3D metal printing of turbine components, it is feasible to have film holes with unconventional diameters, as these holes are created while printing the component. This paper seeks to optimize each film hole diameter at the leading edge of a turbine vane to satisfy several optimum thermal design objectives with given design constraints. The design technique developed uses linear regression-based machine learning model and further optimizes with strategic improvement of the training dataset. Optimization needs cost and benefit criteria are used to base its decision of success, and cost is minimized with maximum benefit within given constraints. This study minimizes the coolant flow (cost) while satisfying the constraints on average metal temperature and metal temperature variations (benefits) that limit the useful life of turbine components. The proposed NORS methodology provides a scientific basis for selecting design parameters in a nonlinear design space. This model is also a potential academic tool to be used in thesis works without demanding extensive computing resources.
Keywords: heat transfer; thermal design; optimization; machine learning; turbine cooling; conjugate thermal analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/17/4587/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/17/4587/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:17:p:4587-:d:408642
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().