4H-SiC Double-Trench MOSFET with Side Wall Heterojunction Diode for Enhanced Reverse Recovery Performance
Junghun Kim and
Kwangsoo Kim
Additional contact information
Junghun Kim: Department of Electronic Engineering, Sogang University, Seoul 04107, Korea
Kwangsoo Kim: Department of Electronic Engineering, Sogang University, Seoul 04107, Korea
Energies, 2020, vol. 13, issue 18, 1-12
Abstract:
In this study, a novel 4H-SiC double-trench metal-oxide semiconductor field-effect transistor (MOSFET) with a side wall heterojunction diode is proposed and investigated by conducting numerical technology computer-aided design simulations. The junction between P+ polysilicon and the N-drift layer forming a heterojunction diode on the side wall of the source trench region suppresses the operation of the PiN body diode during the reverse conduction state. Therefore, the injected minority carriers are completely suppressed, reducing the reverse recovery current by 73%, compared to the PiN body diodes. The switching characteristics of the proposed MOSFET using the heterojunction diode as a freewheeling diode was compared to the power module with a conventional MOSFET and an external diode as a freewheeling diode. It is shown that the switching performance of the proposed structure exhibits equivalent characteristics compared to the power module, enabling the elimination of an external freewheeling diode in the power system.
Keywords: 4H-SiC; double trench; MOSFET; body diode; free-wheeling diode; reverse recovery; heterojunction diode; switching loss (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/18/4602/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/18/4602/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:18:p:4602-:d:409120
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().