EconPapers    
Economics at your fingertips  
 

Numerical Investigation of a Free-Piston Hydrogen-Gasoline Engine Linear Generator

Ziwei Zhang, Huihua Feng and Zhengxing Zuo
Additional contact information
Ziwei Zhang: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
Huihua Feng: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
Zhengxing Zuo: School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Energies, 2020, vol. 13, issue 18, 1-16

Abstract: The free-piston engine linear generator (FPELG) is being investigated by many researchers because of its high thermal efficiency and its variable compression ratio. However, all researchers focused on the FPELG characteristics with mono-fuel. Therefore, in this paper, the performance of the FPELG that has adopted gasoline with hydrogen as fuel is investigated. The method of coupling the zero-dimensional dynamics model with the multi-dimensional CFD (Computational Fluid Dynamics) combustion model was applied during the simulation process. According to the results, the piston TDC (Top Dead Center), the piston peak piston velocity, and the system operation frequency show a negative correlation with the increase of hydrogen fractions. However, the peak in-cylinder pressure was increased with the hydrogen volume fraction increase, due to the fast flame speed and short combustion duration characteristics of hydrogen. Meanwhile, the indicated efficiency of the free-piston engine was increased from 32.3% to 35.3% with the hydrogen volume fraction change from 0% to 4.5%, when the free-piston engine operates at stoichiometric conditions with fixed ignition timing. In addition, with the ignition timing advance increase, the piston TDC was decreased. The peak piston velocity and the peak in-cylinder pressure were in negative correlation with the ignition timing advance. While the engine indicated that the efficiency was increased with the equivalent degree of ignition timing from 20° to 16°. Therefore, the ignition timing of the FPELG under the spark-ignition combustion mode is supposed to be an effective and practical control variable.

Keywords: free-piston engine linear generator; gasoline with hydrogen; hydrogen volume fraction; different ignition timings (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/18/4685/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/18/4685/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:18:p:4685-:d:410783

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4685-:d:410783