Machine Learning for Energy Systems
Denis Sidorov,
Fang Liu and
Yonghui Sun
Additional contact information
Denis Sidorov: Applied Mathematics Department, Energy Systems Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia
Fang Liu: School of Automation, Central South University, Changsha 410083, China
Yonghui Sun: College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China
Energies, 2020, vol. 13, issue 18, 1-6
Abstract:
The objective of this editorial is to overview the content of the special issue “Machine Learning for Energy Systems”. This special issue collects innovative contributions addressing the top challenges in energy systems development, including electric power systems, heating and cooling systems, and gas transportation systems. The special attention is paid to the non-standard mathematical methods integrating data-driven black box dynamical models with classic mathematical and mechanical models. The general motivation of this special issue is driven by the considerable interest in the rethinking and improvement of energy systems due to the progress in heterogeneous data acquisition, data fusion, numerical methods, machine learning, and high-performance computing. The editor of this special issue has made an attempt to publish a book containing original contributions addressing theory and various applications of machine learning in energy systems’ operation, monitoring, and design. The response to our call had 27 submissions from 11 countries (Brazil, Canada, China, Denmark, Germany, Russia, Saudi Arabia, South Korea, Taiwan, UK, and USA), of which 12 were accepted and 15 were rejected. This issue contains 11 technical articles, one review, and one editorial. It covers a broad range of topics including reliability of power systems analysis, power quality issues in railway electrification systems, test systems of transformer oil, industrial control problems in metallurgy, power control for wind turbine fatigue balancing, advanced methods for forecasting of PV output power as well as wind speed and power, control of the AC/DC hybrid power systems with renewables and storage systems, electric-gas energy systems’ risk assessment, battery’s degradation status prediction, insulators fault forecasting, and autonomous energy coordination using blockchain-based negotiation model. In addition, review of the blockchain technology for information security of the energy internet is given. We believe that this special issue will be of interest not only to academics and researchers, but also to all the engineers who are seriously concerned about the unsolved problems in contemporary power engineering, multi-energy microgrids modeling.
Keywords: industrial mathematics; pattern recognition; inverse problems; intelligent control; artificial intelligence; energy management system; smart microgrid; energy systems; forecasting; optimization; Volterra equations; energy storage; load leveling; power control; offshore wind farm; cyber-physical systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/18/4708/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/18/4708/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:18:p:4708-:d:411341
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().