EconPapers    
Economics at your fingertips  
 

Experimental Design, Instrumentation, and Testing of a Laboratory-Scale Test Rig for Torsional Vibrations—The Next Generation

Aditya Sharma, Saket Srivastava and Catalin Teodoriu
Additional contact information
Aditya Sharma: Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, Norman, OK 73019, USA
Saket Srivastava: Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, Norman, OK 73019, USA
Catalin Teodoriu: Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, Norman, OK 73019, USA

Energies, 2020, vol. 13, issue 18, 1-19

Abstract: Drilling technology and specially drilling equipment has dramatically changed in the last 10 years through intensive and innovative technologies, both in terms of hardware and software. While engineers are focusing on safer, faster, and more reliable than ever technologies, big data and automation are currently considered the way forward to achieve these goals. Especially when automation concepts are proposed, the prior testing and qualification under a laboratory-controlled environment are mandatory. Drilling simulators have been hugely successful in training industry personnel and academic professionals. A big reason for its success lies in the seamless integration of hardware and software to include an interactive user interface. Physical experimental simulators have the advantage of exposing the user with visual and auditive aids to better understand the real process. This paper provides an insight into the construction and results obtained using a dedicated laboratory setup, which is also configured to various levels of automation. The setup is capable of safely recreating drilling vibrations that occur in wells, including stick-slip vibrations, which are detrimental in nature. With advanced sensor capabilities, the impact of proper sampling rates on the diagnosis of stick-slip vibrations has been analyzed in the paper. The results show that these vibrations are not only dependent on drilling parameters, such as rotational speed (RPM), torque, and weight on bit, but also on stick-slip parameters, such as bit sticking time period and frequency.

Keywords: drilling automation; drilling vibrations; machine learning; stick-slip; drilling technology (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/18/4750/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/18/4750/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:18:p:4750-:d:412426

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4750-:d:412426