IoT-Based Digital Twin for Energy Cyber-Physical Systems: Design and Implementation
Ahmed Saad,
Samy Faddel and
Osama Mohammed
Additional contact information
Ahmed Saad: Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
Samy Faddel: Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
Osama Mohammed: Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
Energies, 2020, vol. 13, issue 18, 1-21
Abstract:
With the emergence of distributed energy resources (DERs), with their associated communication and control complexities, there is a need for an efficient platform that can digest all the incoming data and ensure the reliable operation of the power system. The digital twin (DT) is a new concept that can unleash tremendous opportunities and can be used at the different control and security levels of power systems. This paper provides a methodology for the modelling of the implementation of energy cyber-physical systems (ECPSs) that can be used for multiple applications. Two DT types are introduced to cover the high-bandwidth and the low-bandwidth applications that need centric oversight decision making. The concept of the digital twin is validated and tested using Amazon Web Services (AWS) as a cloud host that can incorporate physical and data models as well as being able to receive live measurements from the different actual power and control entities. The experimental results demonstrate the feasibility of the real-time implementation of the DT for the ECPS based on internet of things (IoT) and cloud computing technologies. The normalized mean-square error for the low-bandwidth DT case was 3.7%. In the case of a high-bandwidth DT, the proposed method showed superior performance in reconstructing the voltage estimates, with 98.2% accuracy from only the controllers’ states.
Keywords: distributed resources; cyber-physical systems; digital twin; industrial internet of things (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/18/4762/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/18/4762/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:18:p:4762-:d:412579
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().