Simulating Fracture Sealing by Granular LCM Particles in Geothermal Drilling
Lu Lee and
Arash Dahi Taleghani
Additional contact information
Lu Lee: Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
Arash Dahi Taleghani: Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
Energies, 2020, vol. 13, issue 18, 1-14
Abstract:
Lost circulation occurs when the returned fluid is less than what is pumped into the well due to loss of fluid to pores or fractures. A lost-circulation event is a common occurrence in a geothermal well. Typical geothermal reservoirs are often under-pressured and have larger fracture apertures. A severe lost-circulation event is costly and may lead to stuck pipe, well instability, and well abandonment. One typical treatment is adding lost-circulation materials (LCMs) to seal fractures. Conventional LCMs fail to properly seal fractures because their mechanical limit is exceeded at elevated temperatures. In this paper, parametric studies in numerical simulations are conducted to better understand different thermal effects on the sealing mechanisms of LCMs. The computational fluid dynamics (CFDs) and the discrete element method (DEM) are coupled to accurately capture the true physics of sealing by granular materials. Due to computational limits, the traditional Eulerian–Eulerian approach treats solid particles as a group of continuum matter. With the advance of modern computational power, particle bridging is achievable with DEM to track individual particles by modeling their interactive forces between each other. Particle–fluid interactions can be modeled by coupling CFD algorithms. Fracture sealing capability is investigated by studying the effect of four individual properties including fluid viscosity, particle size, friction coefficient, and Young’s modulus. It is found that thermally degraded properties lead to inefficient fracture sealing.
Keywords: lost circulation; bridging; CFD–DEM; drilling fluid; fracture sealing; geothermal drilling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/18/4878/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/18/4878/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:18:p:4878-:d:415116
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().