Pore-Scale Lattice Boltzmann Simulation of Gas Diffusion–Adsorption Kinetics Considering Adsorption-Induced Diffusivity Change
Zhigao Peng,
Shenggui Liu,
Yingjun Li,
Zongwei Deng and
Haoxiong Feng
Additional contact information
Zhigao Peng: College of Civil Engineering, Hunan City University, Yiyang 413000, China
Shenggui Liu: School of Mechanics & Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Yingjun Li: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
Zongwei Deng: College of Civil Engineering, Hunan City University, Yiyang 413000, China
Haoxiong Feng: College of Civil Engineering, Hunan City University, Yiyang 413000, China
Energies, 2020, vol. 13, issue 18, 1-18
Abstract:
The diffusion–adsorption behavior of methane in coal is an important factor that both affecting the decay rate of gas production and the total gas production capacity. In this paper, we established a pore-scale Lattice Boltzmann (LB) model coupled with fluid flow, gas diffusion, and gas adsorption–desorption in the bi-dispersed porous media of coalbed methane. The Knudsen diffusion and dynamic adsorption–desorption of gas in clusters of coal particles were considered. Firstly, the model was verified by two classical cases. Then, three dimensionless numbers, Re , Pe , and Da , were adopted to discuss the impact of fluid velocity, gas diffusivity, and adsorption/desorption rate on the gas flow–diffusion–adsorption process. The effect of the gas adsorption layer in micropores on the diffusion–adsorption–desorption process was considered, and a Langmuir isotherm adsorption theory-based method was developed to obtain the dynamic diffusion coefficient, which can capture the intermediate process during adsorption/desorption reaches equilibrium. The pore-scale bi-disperse porous media of coal matrix was generated based on the RCP algorithm, and the characteristics of gas diffusion and adsorption in the coal matrix with different Pe , Da , and pore size distribution were discussed. The conclusions were as follows: (1) the influence of fluid velocity on the diffusion–adsorption process of coalbed methane at the pore-scale is very small and can be ignored; the magnitude of the gas diffusivity in macropores affects the spread range of the global gas diffusion and the process of adsorption and determines the position where adsorption takes place preferentially. (2) A larger Fickian diffusion coefficient or greater adsorption constant can effectively enhance the adsorption rate, and the trend of gas concentration- adsorption is closer to the Langmuir isotherm adsorption curve. (3) The gas diffusion–adsorption–desorption process is affected by the adsorption properties of coal: the greater the p L or V m , the slower the global gas diffusivity decay. (4) The effect of the gas molecular adsorption layer has a great impact on the kinetic process of gas diffusion–adsorption–desorption. Coal is usually tight and has low permeability, so it is difficult to ensure that the gas diffusion and adsorption are sufficient, the direct use of a static isotherm adsorption equation may be incorrect.
Keywords: coalbed methane; Lattice Boltzmann method; gas diffusion; adsorption–desorption; pore-scale (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/18/4927/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/18/4927/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:18:p:4927-:d:416265
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().