EconPapers    
Economics at your fingertips  
 

Adaptive Maximum Torque per Ampere Control of Sensorless Permanent Magnet Motor Drives

Anton Dianov and Alecksey Anuchin
Additional contact information
Anton Dianov: Home Appliances Division, Samsung Electronics, Suwon 16677, Korea
Alecksey Anuchin: Electric Drives Department, Moscow Power Engineering Institute, 111250 Moscow, Russia

Energies, 2020, vol. 13, issue 19, 1-13

Abstract: Interior permanent magnet synchronous motor (IPMSM) efficiency can be improved by using maximum torque per ampere control (MTPA). MTPA control utilizes both alignment and reluctance torques and usually requires information about the magnetization map of the electrical machine. This paper proposes an adaptive MTPA algorithm for sensorless control systems of IPMSM drives, which is applicable in industrial and commercial drives. This algorithm enhances conventional control schemes, where the output of the speed controller is the commanded stator current and the direct current is calculated using an MTPA equation; therefore, it can be easily implemented in the previously developed drives. The proposed algorithm does not use any motor parameters for the calculation of the MTPA trajectory, which is important for systems operating in changing environmental conditions, because motor inductances and flux linkage strongly depend on the stator current and the rotor temperature, respectively. The proposed algorithm continuously varies the current phase and in such a way it tries to minimize the magnitude of the stator current at the applied load torque. The main contribution of this paper is the development of a technique to overcome the main disadvantage of seeking algorithms–the necessity of a precision information about the rotor position. The proposed method was verified experimentally.

Keywords: interior permanent magnet motors; maximum torque per ampere; sensorless control; adaptive control (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/19/5071/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/19/5071/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:19:p:5071-:d:420533

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5071-:d:420533