A Novel Fault Location Method of a 35-kV High-Reliability Distribution Network Using Wavelet Filter-S Transform
Shuyu Guo,
Shihong Miao,
Haipeng Zhao,
Haoran Yin and
Zixin Wang
Additional contact information
Shuyu Guo: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Electric Power Security and High Efficiency Key Laboratory, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Shihong Miao: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Electric Power Security and High Efficiency Key Laboratory, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Haipeng Zhao: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Electric Power Security and High Efficiency Key Laboratory, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Haoran Yin: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Electric Power Security and High Efficiency Key Laboratory, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Zixin Wang: State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hubei Electric Power Security and High Efficiency Key Laboratory, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Energies, 2020, vol. 13, issue 19, 1-22
Abstract:
Timely and accurate fault location for a 35-kVhigh-reliability distribution network is one of the key technologies to improve the safety and efficiency of distribution network operations. A novel fault location method of 35-kV high-reliability distribution network is proposed in this paper. First, the distributed multipoint fault location model is established based on the power structure of a 35-kV high-reliability distribution network. The distribution of voltage and current traveling waves along the lines is comprehensively considered in this model. Secondly, we analyze the influence of noise interference, analog-digital conversion frequency, and conversion bits on the location accuracy. The simulation method of noise and analog-digital conversion is proposed based on simulated samples. Then, a wavelet filter is used to reduce the influence of noise on the calibration of the traveling wave arrival time, and matrix modulus of S transform is used to identify the arrival time for the wave. Finally, the simulation model of a 35-kV high-reliability distribution network is established to analyze the location accuracy in the case of single-phase to ground via resistance, two-phase short-circuit to ground via resistance, and three-phase short-circuit faults. The simulation results indicate that the proposed method has high location accuracy under the above fault conditions.
Keywords: 35-kV high reliability distribution network; distributed multi-point fault location; noise and analog-digital conversion; wavelet filter-S transform (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/19/5118/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/19/5118/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:19:p:5118-:d:422708
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().