Experimental Investigation of Inhibitive Drilling Fluids Performance: Case Studies from United States Shale Basins
Nabe Konate and
Saeed Salehi
Additional contact information
Nabe Konate: School of Petroleum and Geological Engineering, The University of Oklahoma, 660 Parrington Oval, Norman, OK 73019, USA
Saeed Salehi: School of Petroleum and Geological Engineering, The University of Oklahoma, 660 Parrington Oval, Norman, OK 73019, USA
Energies, 2020, vol. 13, issue 19, 1-22
Abstract:
Shale formations are attractive prospects due to their potential in oil and gas production. Some of the largest shale formations in the mainland US, such as the Tuscaloosa Marine Shale (TMS), have reserves estimated to be around 7 billion barrels. Despite their huge potential, shale formations present major concerns for drilling operators. These prospects have unique challenges because of all their alteration and incompatibility issues with drilling and completion fluids. Most shale formations undergo numerous chemical and physical alterations, making their interaction with the drilling and completion fluid systems very complex to understand. In this study, a high-pressure, high-temperature (HPHT) drilling simulator was used to mimic real time drilling operations to investigate the performance of inhibitive drilling fluid systems in two major shale formations (Eagle Ford Shale and Tuscaloosa Marine Shale). A series of drilling experiments using the drilling simulator and clay swelling tests were conducted to evaluate the drilling performance of the KCl drilling fluid and cesium formate brine systems and their effectiveness in minimizing drilling concerns. Cylindrical cores were used to mimic vertical wellbores. It was found that the inhibitive muds systems (KCl and cesium formate) provided improved drilling performance compared to conventional fluid systems. Among the inhibitive systems, the cesium formate brine showed the best drilling performances due to its low swelling rate and improved drilling performance.
Keywords: inhibitive drilling fluids; drilling performance; rate of penetration; swelling; torque; friction factor (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/19/5142/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/19/5142/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:19:p:5142-:d:423056
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().