A Novel Algebraic Stress Model with Machine-Learning-Assisted Parameterization
Chao Jiang,
Junyi Mi,
Shujin Laima and
Hui Li
Additional contact information
Chao Jiang: Artificial Intelligence Laboratory, Harbin Institute of Technology, Harbin 150090, China
Junyi Mi: Artificial Intelligence Laboratory, Harbin Institute of Technology, Harbin 150090, China
Shujin Laima: Artificial Intelligence Laboratory, Harbin Institute of Technology, Harbin 150090, China
Hui Li: Artificial Intelligence Laboratory, Harbin Institute of Technology, Harbin 150090, China
Energies, 2020, vol. 13, issue 1, 1-21
Abstract:
Reynolds-stress closure modeling is critical to Reynolds-averaged Navier-Stokes (RANS) analysis, and it remains a challenging issue in reducing both structural and parametric inaccuracies. This study first proposes a novel algebraic stress model named as tensorial quadratic eddy-viscosity model (TQEVM), in which nonlinear terms improve previous model-form failure due to neglection of nonlocal effects. Then a data-driven regression model based on a fully-connected deep neural network is designed to determine the TQEVM coefficients. The well-trained data-driven model using high-fidelity direct numerical simulation (DNS) data successfully learned the underlying input-output relationships, further obtaining spatial-dependent optimal values of these coefficients. Finally, detailed validations are made in wall-bounded flows where nonlocal effects are expected to be significant. Comparative results indicate that TQEVM provides improvements both for the stress-strain misalignment and stress anisotropy, which are clear advantages over linear and quadratic eddy-viscosity models. TQEVM extends to the scope of resolution to the wall distance y + ≈ 9 as well as provides a realizable solution. RANS simulations with TQEVM are also carried out and the obtained mean-flow quantities of interest agree well with DNS. This work, therefore, results in a high-fidelity representation of Reynolds stresses and contributes to further understanding of machine-learning-assisted turbulence modeling and regression analysis.
Keywords: turbulence modeling; nonlocal effects; machine learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/1/258/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/1/258/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:1:p:258-:d:305249
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().