EconPapers    
Economics at your fingertips  
 

A Novel Algebraic Stress Model with Machine-Learning-Assisted Parameterization

Chao Jiang, Junyi Mi, Shujin Laima and Hui Li
Additional contact information
Chao Jiang: Artificial Intelligence Laboratory, Harbin Institute of Technology, Harbin 150090, China
Junyi Mi: Artificial Intelligence Laboratory, Harbin Institute of Technology, Harbin 150090, China
Shujin Laima: Artificial Intelligence Laboratory, Harbin Institute of Technology, Harbin 150090, China
Hui Li: Artificial Intelligence Laboratory, Harbin Institute of Technology, Harbin 150090, China

Energies, 2020, vol. 13, issue 1, 1-21

Abstract: Reynolds-stress closure modeling is critical to Reynolds-averaged Navier-Stokes (RANS) analysis, and it remains a challenging issue in reducing both structural and parametric inaccuracies. This study first proposes a novel algebraic stress model named as tensorial quadratic eddy-viscosity model (TQEVM), in which nonlinear terms improve previous model-form failure due to neglection of nonlocal effects. Then a data-driven regression model based on a fully-connected deep neural network is designed to determine the TQEVM coefficients. The well-trained data-driven model using high-fidelity direct numerical simulation (DNS) data successfully learned the underlying input-output relationships, further obtaining spatial-dependent optimal values of these coefficients. Finally, detailed validations are made in wall-bounded flows where nonlocal effects are expected to be significant. Comparative results indicate that TQEVM provides improvements both for the stress-strain misalignment and stress anisotropy, which are clear advantages over linear and quadratic eddy-viscosity models. TQEVM extends to the scope of resolution to the wall distance y + ≈ 9 as well as provides a realizable solution. RANS simulations with TQEVM are also carried out and the obtained mean-flow quantities of interest agree well with DNS. This work, therefore, results in a high-fidelity representation of Reynolds stresses and contributes to further understanding of machine-learning-assisted turbulence modeling and regression analysis.

Keywords: turbulence modeling; nonlocal effects; machine learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/1/258/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/1/258/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:1:p:258-:d:305249

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:258-:d:305249