Effect of Slot Width and Density on Slotted Liner Performance in SAGD Operations
Yujia Guo,
Alireza Nouri and
Siavash Nejadi
Additional contact information
Yujia Guo: Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
Alireza Nouri: Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
Siavash Nejadi: Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
Energies, 2020, vol. 13, issue 1, 1-18
Abstract:
Sand production from a poorly consolidated reservoir could give rise to some severe problems during production. Holding the load bearing solids in place is the main goal of any sand control technique. The only sand control techniques that have found applications in steam assisted gravity drainage (SAGD) are some of the mechanical methods, including wire wrapped screens, slotted liners and more recently, punched screens. Slotted liner is one of the most effective mechanical sand control methods in the unconsolidated reservoir exploitation, which has proven to be the preferred sand control method in the SAGD operations. The main advantage of the slotted liners that makes them suitable for SAGD operations is their superior mechanical integrity for the completion of long horizontal wells. This study is an attempt to increase the existing understanding of the fines migration, sand production, and plugging tendency for slotted liners by using a novel large-scale scaled completion test (SCT) facility. A triaxial cell assembly was used to load sand-packs with specified and controlled grain size distribution, shape and mineralogy, on multi-slot sand control coupons. Different stress levels were applied parallel and perpendicular to different combinations of slot width and density in multi-slot coupons, while brine was injected from the top of the sand-pack towards the coupon. At each stress level, the mass of produced sand was measured, and the pressure drops along the sand-pack and coupon were recorded. Fines migration was also investigated by measuring fines/clay concentration along the sand-pack. The current study employed multi-slot coupons to investigate flow interactions among slots and its effect on the flow performance of liner under typically encountered stresses in SAGD wells. According to the experimental observations, increasing slot width generally reduces the possibility of pore plugging caused by fines migration. However, there is a limit for slot aperture beyond which the plugging is not reduced any further, and only a higher level of sanding occurs. Test measurements also indicated that besides the slot width, the slot density also influences the level of plugging and sand production and must be included in the design criteria.
Keywords: SAGD; sand control; slotted liner (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/1/268/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/1/268/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:1:p:268-:d:305478
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().