EconPapers    
Economics at your fingertips  
 

Numerical Investigation of the Effect of Partially Propped Fracture Closure on Gas Production in Fractured Shale Reservoirs

Xia Yan, Zhaoqin Huang, Qi Zhang, Dongyan Fan and Jun Yao
Additional contact information
Xia Yan: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Zhaoqin Huang: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Qi Zhang: Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
Dongyan Fan: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Jun Yao: School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

Energies, 2020, vol. 13, issue 20, 1-24

Abstract: Nonuniform proppant distribution is fairly common in hydraulic fractures, and different closure behaviors of the propped and unpropped fractures have been observed in lots of physical experiments. However, the modeling of partially propped fracture closure is rarely performed, and its effect on gas production is not well understood as a result of previous studies. In this paper, a fully coupled fluid flow and geomechanics model is developed to simulate partially propped fracture closure, and to examine its effect on gas production in fractured shale reservoirs. Specifically, an efficient hybrid model, which consists of a single porosity model, a multiple porosity model and the embedded discrete fracture model (EDFM), is adopted to model the hydro-mechanical coupling process in fractured shale reservoirs. In flow equations, the Klinkenberg effect is considered in gas apparent permeability, and adsorption/desorption is treated as an additional source term. In the geomechanical domain, the closure behaviors of propped and unpropped fractures are described through two different constitutive models. Then, a stabilized extended finite element method (XFEM) iterative formulation, which is based on the polynomial pressure projection (PPP) technique, is developed to simulate a partially propped fracture closure with the consideration of displacement discontinuity at the fracture interfaces. After that, the sequential implicit method is applied to solve the coupled problem, in which the finite volume method (FVM) and stabilized XFEM are applied to discretize the flow and geomechanics equations, respectively. Finally, the proposed method is validated through some numerical examples, and then it is further used to study the effect of partially propped fracture closures on gas production in 3D fractured shale reservoir simulation models. This work will contribute to a better understanding of the dynamic behaviors of fractured shale reservoirs during gas production, and will provide more realistic production forecasts.

Keywords: fractured shale reservoir; embedded discrete fracture model; extended finite element method; hydro-mechanical coupling; partially propped fracture closure; nonuniform proppant distribution (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/20/5339/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/20/5339/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:20:p:5339-:d:427511

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5339-:d:427511