Toward the Optimal Operation of Hybrid Renewable Energy Resources in Microgrids
Shabir Ahmad,
Israr Ullah,
Faisal Jamil and
DoHyeun Kim
Additional contact information
Shabir Ahmad: Computer Engineering Department, Jeju National University, Jeju-si 63243, Korea
Israr Ullah: Department of Computer Science, Virtual University of Pakistan, Lahore 54000, Pakistan
Faisal Jamil: Computer Engineering Department, Jeju National University, Jeju-si 63243, Korea
DoHyeun Kim: Computer Engineering Department, Jeju National University, Jeju-si 63243, Korea
Energies, 2020, vol. 13, issue 20, 1-19
Abstract:
Renewable energy sources are environmentally friendly and cost-efficient. However, the problem with these renewable resources is their heavy reliance on weather conditions. Thus, at times, these solutions are not guaranteed to meet the required demand all the time. For this, hybrid microgrids are introduced, which have a combination of both renewable energy sources and non-renewable energy resources. In this paper, a cost-efficient optimization algorithm is proposed that minimizes the use of non-renewable energy sources. It maximizes the use of renewable energy resources by meeting the demand for utility grids. Real data based on the load and demand of the utility grids in Italy is used, and a system that determines the optimal sizing of the microgrid and a daily plan is introduced to optimize the renewable resources operations. As part of the proposal, the objective function for the operation and planning of the microgrid in such a way to minimize cost is formulated. Moreover, a variant of the PSO algorithm named recurrent PSO is implemented. The recurrent PSO algorithm solves the proposed optimization objective function by minimizing the cost for the installation and working of the microgrid. Afterwards, the energy management system algorithm lays out a plan for the daily operation of the microgrid. The performance of the system is evaluated using different state-of-the-art optimization methods. The proposed work can help minimize the use of diesel generators, which not only saves financial resources but also contributes toward a green environment.
Keywords: renewable energy; microgrids; optimization problems; optimal sizing problems; cost minimization; sustainable development (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/20/5482/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/20/5482/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:20:p:5482-:d:431678
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().