EconPapers    
Economics at your fingertips  
 

Energy-Saving Train Regulation for Metro Lines Using Distributed Model Predictive Control

Fei Shang, Jingyuan Zhan and Yangzhou Chen
Additional contact information
Fei Shang: Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China
Jingyuan Zhan: College of Artificial Intelligence and Automation, Beijing University of Technology, Beijing 100124, China
Yangzhou Chen: College of Artificial Intelligence and Automation, Beijing University of Technology, Beijing 100124, China

Energies, 2020, vol. 13, issue 20, 1-18

Abstract: Due to environmental concerns, the energy-saving train regulation is necessary for urban metro transportation, which can improve the service quality and energy efficiency of metro lines. In contrast to most of the existing research of train regulation based on centralized control, this paper studies the energy-saving train regulation problem by utilizing distributed model predictive control (DMPC), which is motivated by the breakthrough of vehicle-based train control (VBTC) technology and the pressing real-time control demand. Firstly, we establish a distributed control framework for train regulation process assuming each train is self-organized and capable to communicate with its preceding train. Then we propose a DMPC algorithm for solving the energy-saving train regulation problem, where each train determines its control input by minimizing a constrained local cost function mainly composed of schedule deviation, headway deviation, and energy consumption. Finally, simulations on train regulation for the Beijing Yizhuang metro line are carried out to demonstrate the effectiveness of the proposed DMPC algorithm, and the results reveal that the proposed algorithm exhibits significantly improved real-time performance without deteriorating the service quality or energy efficiency compared with the centralized MPC method.

Keywords: metro line; train regulation; energy saving; distributed; model predictive control; operational constraints (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/20/5483/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/20/5483/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:20:p:5483-:d:431691

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5483-:d:431691