EconPapers    
Economics at your fingertips  
 

Classification of Partial Discharge Images Using Deep Convolutional Neural Networks

Marek Florkowski
Additional contact information
Marek Florkowski: Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

Energies, 2020, vol. 13, issue 20, 1-17

Abstract: Artificial intelligence-based solutions and applications have great potential in various fields of electrical power engineering. The problem of the electrical reliability of power equipment directly refers to the immunity of high-voltage (HV) insulation systems to operating stresses, overvoltages and other stresses—in particular, those involving strong electric fields. Therefore, tracing material degradation processes in insulation systems requires dedicated diagnostics; one of the most reliable quality indicators of high-voltage insulation systems is partial discharge (PD) measurement. In this paper, an example of the application of a neural network to partial discharge images is presented, which is based on the convolutional neural network (CNN) architecture, and used to recognize the stages of the aging of high-voltage electrical insulation based on PD images. Partial discharge images refer to phase-resolved patterns revealing various discharge stages and forms. The test specimens were aged under high electric stress, and the measurement results were saved continuously within a predefined time period. The four distinguishable classes of the electrical insulation degradation process were defined, mimicking the changes that occurred within the electrical insulation in the specimens (i.e., start, middle, end and noise/disturbance), with the goal of properly recognizing these stages in the untrained image samples. The results reflect the exemplary performance of the CNN and its resilience to manipulations of the network architecture and values of the hyperparameters. Convolutional neural networks seem to be a promising component of future autonomous PD expert systems.

Keywords: partial discharges; phase-resolved patterns; high voltage insulation; diagnostics; machine learning; deep learning; convolutional neural network (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/20/5496/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/20/5496/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:20:p:5496-:d:431941

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5496-:d:431941