Thermophysical Properties of 1,1,1,3,3,3-hexafluoro-2-methoxypropane (HFE-356mmz) in the Vapor Phase Measured by Using an Acoustic-Microwave Resonance Technique
Yuya Kano
Additional contact information
Yuya Kano: National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-853, Japan
Energies, 2020, vol. 13, issue 20, 1-16
Abstract:
Thermophysical properties of HFE-356mmz in the vapor phase were measured by means of an acoustic-microwave resonance method. HFE-356mmz, which is 1,1,1,3,3,3-hexafluoro-2-methoxypropane in chemical name, is expected to be used as a working fluid with low global warming potential for the Organic Rankine cycle (ORC). The sound velocity and dielectric permittivity were simultaneously measured by using a cylindrical acoustic-microwave resonator. The sound velocity data were analyzed to obtain the ideal-gas heat capacity at constant pressure. The integral of the ideal-gas heat capacity as a function of temperature derives the ideal-gas enthalpy, which is a fundamental and important energy property to simulate the thermodynamic cycle. Similarly, the analysis of the dielectric permittivity data leads to information on the ideal-gas molar polarizability, dipole moment, and density. The acquired thermophysical properties of HFE-356mmz were compared to those of R-245fa and n-pentane, which are the existing working fluids for the ORC system, to prospect a feasibility of HFE-356mmz as their alternative.
Keywords: 1,1,1,3,3,3-hexafluoro-2-methoxypropane (HFE-356mmz); sound velocity; dielectric permittivity; heat capacity; molar polarization; dipole moment; density (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/20/5525/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/20/5525/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:20:p:5525-:d:432671
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().