EconPapers    
Economics at your fingertips  
 

Analytical Study of the Solidification of a Phase Change Material in an Annular Space

Zygmunt Lipnicki and Tomasz Małolepszy
Additional contact information
Zygmunt Lipnicki: Institute of Environmental Engineering, University of Zielona Góra, 65-516 Zielona Góra, Poland
Tomasz Małolepszy: Institute of Mathematics, University of Zielona Góra, 65-516 Zielona Góra, Poland

Energies, 2020, vol. 13, issue 21, 1-13

Abstract: In this study, the process of the solidification of a PCM (phase change material) liquid in an annular space was analytically investigated with the use of a simplified quasi-steady-state model. This model described the phase change phenomenon with the cylindrical solidification front and with the solidification liquid overheated above the solidification temperature. One of the important novelties of the applied model was the determination of the coefficient of the heat transfer between the liquid and the solidified layer on the solidification surface, which was calculated as a function of the location of the solidification front. A method for calculating the variable coefficient of heat transfer on the surface of the solidification front during the solidification process is presented. The contact layer between the cold wall and the solidified layer was incorporated into the model and played an important role. The theoretical analytical method describing the solidification process based on the quasi-steady model was used in the study. Moreover, the main problem considered in this work could be reduced to a conjugate system of differential equations, allowing it to be solved numerically. From this perspective, the influence of various dimensionless parameters on the solidification process could be clearly seen. The obtained numerical results are presented in graphical form. The results of the theoretical research were compared with the experimental research of one of the author’s earlier works and they showed a significant agreement. Finally, the simple analytical approach presented in this work can be used for designing annular heat accumulators.

Keywords: phase change material (PCM); solidification in an annular space; heat transfer coefficient on solidification front; overheated liquid; heat accumulator (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/21/5561/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/21/5561/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:21:p:5561-:d:433956

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5561-:d:433956