EconPapers    
Economics at your fingertips  
 

Generation Capacity Expansion Planning Considering Hourly Dynamics of Renewable Resources

Heejung Park
Additional contact information
Heejung Park: School of Energy Engineering, Kyungpook National University, Daegu 41556, Korea

Energies, 2020, vol. 13, issue 21, 1-15

Abstract: As more generation capacity using renewable sources is accommodated in the power system, methods to represent the uncertainty of renewable sources become more important, and stochastic models with different methods for uncertainty representation are introduced. This paper investigates the impacts of hourly variability representation of random variables on a stochastic generation capacity expansion planning model. In order to represent the hourly variability as well as uncertainty of the random parameters such as wind power availability, solar irradiance, and load, AutoRegressive-To-Anything (ARTA) stochastic process is applied. By using autocorrelations and marginal distributions of the random parameters, a stochastic process with hourly intervals is generated, where generated random sample paths are used for scenarios. A mathematical formulation using stochastic programming is presented, and a modified IEEE 300-bus system with transmission line constraints is employed to the mathematical model as a test system. Optimal generation capacity solutions obtained using GAMS/CPLEX are compared to the ones from the model only capturing the uncertainty and seasonal variability of the random parameters. The comparison results indicate that the economic value of solar photovoltaic (PV) generation may be overestimated in the case where the hourly variability is not reflected; thus, ignoring the hourly variability may lead to higher building costs and higher capacity of solar PV systems.

Keywords: renewable energy; stochastic generation planning; power system expansion; solar PV; energy economics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/21/5626/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/21/5626/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:21:p:5626-:d:435704

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5626-:d:435704