Chattering Free Adaptive Sliding Mode Controller for Photovoltaic Panels with Maximum Power Point Tracking
Hina Gohar Ali and
Ramon Vilanova Arbos
Additional contact information
Hina Gohar Ali: Department Telecommunications and Systems Engineering, School of Engineering, Universitat Autonoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallés, Barcelona, Spain
Ramon Vilanova Arbos: Department Telecommunications and Systems Engineering, School of Engineering, Universitat Autonoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallés, Barcelona, Spain
Energies, 2020, vol. 13, issue 21, 1-18
Abstract:
Photovoltaic system is utilized to generate energy that relies upon the ecological conditions, for example, temperature, irradiance, and the load associated with it. Considering the non-linear component of photovoltaic (PV) array and the issue of low effectiveness because of the variable natural conditions, the Maximum Power Point Tracking (MPPT) method is required to extract the maximum power from the PV system. The adopted control is executed utilizing an Adaptive Sliding Mode Controller (ASMC) and the enhancement is actualized utilizing an Improved Pattern Search Method (IPSM). This work employs IPSM based optimization approach in order to command the underlying ASMC controller. The upper level decision determines the sliding surface for the adaptive controller. As a non-linear strategy, the stability of the adaptive controller is guaranteed by conducting a Liapunov analysis. On the practical side, MATLAB/Simulink is used as simulator for the controller implementation and coupling with PSIM in order to connect it with the PV system object of control. The simulation results validate that the proposed controller effectively improves the voltage tracking, system power with reduced chattering effect and steady-state error. The performance of the proposed control architectures is validated by comparing the proposals with that of the well-known and widely used Proportional Integral Derivative (PID) controller. That operated as a lower level controller for a Perturb & Observe (P&O) and Particle Swarm Optimization (PSO).
Keywords: photovoltaic (PV); maximum power point tracking (MPPT); adaptive sliding mode controller (ASMC); improved pattern search method (IPSM); particle swarm optimization (PSO) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/21/5678/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/21/5678/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:21:p:5678-:d:437443
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().