EconPapers    
Economics at your fingertips  
 

A Study of Cloth Seal Leakage Performance Based on Geometry and Pressure Load

Erdem Gorgun, Mahmut Faruk Aksit and Yahya Dogu
Additional contact information
Erdem Gorgun: Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
Mahmut Faruk Aksit: Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
Yahya Dogu: Department of Mechanical Engineering, Kirikkale University, Kirikkale 71450, Turkey

Energies, 2020, vol. 13, issue 22, 1-20

Abstract: Metal cloth seals have been used increasingly in gas turbines due to their flexibility and superior leakage performance. Leakage performance of a metal cloth seal depends on operating conditions, slot and geometric dimensions. These parameters need to be investigated for the best leakage performance. In this study, pressure drop and critical geometric parameters of typical cloth seal form are investigated with an experimental setup. Slot depth, cloth width, sealing gap, shim thickness, surface roughness, pressure drop, offset and mismatch are selected parameters for the screening experiments. Sixteen experiments were conducted following a two-level Resolution IV fractional factorial experiment design for eight parameters. The results indicated that strong parameters for the leakage performance are pressure drop, cloth width, slot depth and offset. Leakage rate is increased with an increase in slot depth, gap, shim thickness, pressure drop and mismatch. During screening experiments, the experiment with minimum flow rate has 86% lower leakage rate than the experiment with maximum flow rate. For main experiments, a Box-Behnken experiment design is applied to analyze nonlinear effects of four strong parameters on the leakage rate. A closed-form equation is derived based on the data and presented in this study.

Keywords: cloth seal; gas turbine; Box-Behnken design; fractional factorial design; energy efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/22/5884/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/22/5884/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:22:p:5884-:d:443343

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5884-:d:443343