Relationships between Dynamic Elastic Moduli in Shale Reservoirs
Sheyore John Omovie and
John P. Castagna
Additional contact information
Sheyore John Omovie: Petrophysics Department, Formerly with OXY, Houston, TX 77046, USA
John P. Castagna: Earth and Atmospheric Sciences, University of Houston, 4800 Calhoun Rd, Houston, TX 77004, USA
Energies, 2020, vol. 13, issue 22, 1-22
Abstract:
Sonic log compressional and shear-wave velocities combined with logged bulk density can be used to calculate dynamic elastic moduli in organic shale reservoirs. We use linear multivariate regression to investigate modulus prediction when shear-wave velocities are not available in seven unconventional shale reservoirs. Using only P-wave modulus derived from logged compressional-wave velocity and density as a predictor of dynamic shear modulus in a single bivariate regression equation for all seven shale reservoirs results in prediction standard error of less than 1 GPa. By incorporating compositional variables in addition to P-wave modulus in the regression, the prediction standard error is reduced to less than 0.8 GPa with a single equation for all formations. Relationships between formation bulk and shear moduli are less well defined. Regressing against formation composition only, we find the two most important variables in predicting average formation moduli to be fractional volume of organic matter and volume of clay in that order. While average formation bulk modulus is found to be linearly related to volume fraction of total organic carbon, shear modulus is better predicted using the square of the volume fraction of total organic carbon. Both Young’s modulus and Poisson’s ratio decrease with increasing TOC while increasing clay volume decreases Young’s modulus and increases Poisson’s ratio.
Keywords: elastic moduli; shale reservoirs; sonic velocities; Poisson’s ratio; Young’s modulus (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/22/6001/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/22/6001/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:22:p:6001-:d:446535
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().