Possibilities of Transition from Centralized Energy Systems to Distributed Energy Sources in Large Polish Cities
Dorota Chwieduk,
Wojciech Bujalski and
Bartosz Chwieduk
Additional contact information
Dorota Chwieduk: Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00665 Warsaw, Poland
Wojciech Bujalski: Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00665 Warsaw, Poland
Bartosz Chwieduk: Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 00665 Warsaw, Poland
Energies, 2020, vol. 13, issue 22, 1-23
Abstract:
The main aim of this paper is to evaluate the possible transition routes from the existing centralized energy systems in Polish cities to modern low-emission distributed energy systems based on locally available energy sources, mainly solar energy. To evaluate these possibilities, this paper first presents the current structure of energy grids and heating networks in Polish cities. A basic review of energy consumption in the building sector is given, with emphasis on residential buildings. This paper deals with the evaluation of the effectiveness of operation of central district heating systems and heat distribution systems; predicts the improvement in the effectiveness of the energy production, distribution, and use; and analyzes the possible integration of the existing system with distributed energy sources. The possibility of the introduction of photovoltaic (PV) systems to reduce energy consumption by residential buildings in a big city (Warsaw) is analyzed. It is assumed that some residential buildings, selected because of their good solar insolation conditions, can be equipped with new PV installations. Electricity produced by the PV systems can be used on site and/or transferred to the grid. PV energy can be used not only for lighting and electrical appliances in homes but also to drive micro- and small-scale heat pumps. It is assumed that the PV modules are located on roofs of residential buildings and are treated as individual micro scale energy systems of installed capacity not larger than 50 kW for each of the buildings. In such a case, the micro energy system can use the grid as a virtual electricity store of 70% or 80% efficiency and can produce and transfer electricity using a net-metering scheme. The results show that the application of micro-scale PV systems would help residential buildings to be more energy efficient, reduce energy consumption based on fossil fuels significantly, and even if the grid cannot be used as a virtual electricity store then the direct self-consumption of buildings can reduce their energy consumption by 30% on average. Development of micro-scale PV systems seems to be one of the most efficient options for a quick transformation of the centralized energy system in large Polish cities to a distributed energy one based on individual renewable energy sources.
Keywords: centralized energy systems; district heating systems; energy demand in buildings; distributed energy sources; photovoltaic systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/22/6007/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/22/6007/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:22:p:6007-:d:446511
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().