Study on the Law of Fracture Evolution under Repeated Mining of Close-Distance Coal Seams
Feng Cui,
Chong Jia,
Xingping Lai,
Yanbing Yang and
Shuai Dong
Additional contact information
Feng Cui: Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
Chong Jia: Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
Xingping Lai: Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
Yanbing Yang: Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
Shuai Dong: Energy School, Xi’an University of Science and Technology, Xi’an 710054, China
Energies, 2020, vol. 13, issue 22, 1-20
Abstract:
The western region of China is rich in mineral resources. The vigorous development of mineral resources has exacerbated the environmental and safety problems in the region. One of the important links to solve this problem is to control the development laws and distribution characteristics of the overburdened cracks in the mining of this area. In this paper, the Xiashijie coal mine 3-2 coal seam and 4-2 coal seam are examples of repeated mining, and are examined as the background, through theoretical analysis to optimize the size of the coal pillars in the lower section, using the 3DEC numerical simulation experiment method and the rise of the cracks in the short-distance coal seam. Repeated mining monitoring and analysis of the development law are used to ascertain distribution characteristics of overburdened cracks caused by the repeated mining process of the working face. The results show that: (1) By establishing a mechanical model of the overlying strata structure under short-distance coal seam group mining, and carrying out the force analysis of the double section coal pillar under repeated mining, the reasonable size of a lower section coal pillar was determined to be 70 m. (2) As the development height of a fracture progresses with the working face, its expansion rate undergoes four obvious changes: fluctuations within a certain range, the expansion rate reaches the peak after the rock formation is concentrated and broken, the cyclical change gradually decreases, and the expansion rate is zero after complete mining. (3) The fracture zone height of 222 and 224 face under repeated mining in the 4-2 coal seam was 19.56–22.31 times and 22.38–24.54 times larger, respectively, and the post-mining fracture extension of the face with larger width and deeper burial under repeated mining was higher than that of the adjacent face. This study provides scientific guidance for the rational division of coal pillars and the solution of the problem of water conservation mining under repeated mining in the adjacent face of a short-distance coal seam.
Keywords: close-distance coal seam; repeated mining; numerical simulation; fracture evolution (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/22/6064/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/22/6064/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:22:p:6064-:d:447889
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().