Real-Time Pricing Scheme in Smart Grid Considering Time Preference: Game Theoretic Approach
Ri Piao,
Deok-Joo Lee and
Taegu Kim
Additional contact information
Ri Piao: Department of Industrial Engineering, Seoul National University, Seoul 08826, Korea
Deok-Joo Lee: Department of Industrial Engineering, Seoul National University, Seoul 08826, Korea
Taegu Kim: Department of Industrial and Management Engineering, Hanbat National University, Daejeon 34158, Korea
Energies, 2020, vol. 13, issue 22, 1-19
Abstract:
Unbalanced power demand across time slots causes overload in a specific time zone. Various studies have proved that this can be mitigated through smart grid and price policy, but research on time preference is insufficient. This study proposed a real-time pricing model on a smart grid through a two-stage Stackelberg game model based on a utility function that reflects the user’s time preference. In the first step, the suppliers determine the profit-maximizing price, and then, the users decide the electricity usage schedule according to the given price. Nash equilibrium and comparative analysis of the proposed game explain the relationship between time preference, price, and usage. Additionally, a Monte Carlo simulation demonstrated the effect of the change in time preference distribution. The experimental results confirmed that the proposed real-time pricing method lowers peak-to-average ratio (PAR) and increases overall social welfare. This study is meaningful in that it presents a pricing method that considers both users’ and suppliers’ strategies with time preference. It is expected that the proposed method would contribute to a reduction in the need for additional power generation facilities through efficient operation of the smart grid.
Keywords: smart grid; Stackelberg game; game theory; time preference; pricing policy; real-time pricing; optimal usage scheduling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/22/6138/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/22/6138/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:22:p:6138-:d:449518
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().