EconPapers    
Economics at your fingertips  
 

Method of Improving Lateral Stability by Using Additional Yaw Moment of Semi-Trailer

Zhenyuan Bai, Yufeng Lu and Yunxia Li
Additional contact information
Zhenyuan Bai: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 205353, China
Yufeng Lu: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 205353, China
Yunxia Li: School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 205353, China

Energies, 2020, vol. 13, issue 23, 1-23

Abstract: The lateral stability control of tractor semi-trailer plays a vital role for enhancing its driving safety, and the distributed electric drive structure of a hub motor creates opportunities and challenges for realising the lateral stability accurately. Based on the dynamics simulation software TruckSim, a nonlinear dynamic tractor semi-trailer model is established, and a MATLAB/Simulink linear three-degree-of-freedom monorail reference model is established. The upper controller adopts fuzzy proportional–integral–derivative control to export active yaw torque values of the tractor and semi-trailer. The lower controller outputs the driving/braking torque of each wheel according to the target wheel driving/braking rules and torque distribution rules. The tractor produce an active yaw torque through conventional differential braking the hub motor is installed on both sides of the semi-trailer, and the active yaw torque is produced by the coordinated control of the driving/braking torque of the hub motor and the differential braking of the mechanical braking system. To prevent wheel locking, the slip rate of each wheel is controlled. Finally, based on the TruckSim–MATLAB/Simulink cosimulation platform, cosimulation is performed under typical working conditions. The simulation results show that the control strategy proposed in this report is superior to the conventional differential braking control (ESP). It can not only improve the lateral stability of the vehicle more effectively, but also improve the roll stability.

Keywords: tractor semi-trailer; lateral stability; hub motor; differential braking; coordination (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/23/6317/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/23/6317/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:23:p:6317-:d:453755

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6317-:d:453755