Electrical Modelling of Switching Arcs in a Low Voltage Relay at Low Currents
Ammar Najam,
Petrus Pieterse and
Dirk Uhrlandt
Additional contact information
Ammar Najam: Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
Petrus Pieterse: Institute for Electrical Power Engineering, University of Rostock, 18051 Rostock, Germany
Dirk Uhrlandt: Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
Energies, 2020, vol. 13, issue 23, 1-15
Abstract:
The arc behaviour of short, low current switching arcs is not well understood and lacks a reliable model. In this work, the behaviour of an arc in the air is studied during contact separation at low DC currents (0.5 A to 20 A) and for small gap lengths (0 mm to 6 mm). The experiments are performed on a low voltage relay with two different electrode configurations. The arc voltage is measured during the opening of the contacts at constant current. The arc length is determined optically by tracing the mean path of the arc over time from a series of high-speed images. From the synchronised data of voltage vs. distance, first a sudden jump of the voltage at the start of contact opening is observed. Secondly, a sudden change in the voltage gradient occurs as the arc is elongated. Short arcs with a length up to approximately 1.25 mm show an intense radiation in the overall gap region and high voltage gradients. An unexpected behaviour never reported before was observed for longer arcs at low current: Two characteristic regions occur, a region in front of the cathode, with a length of approximately 1.25 mm, having an intense radiation and a high voltage gradient as well as a region of much lower radiation intensity and a comparatively lower voltage gradient in the remaining gap area despite a small anode spot region. The characteristic border of approximately 1.25 mm is almost independent of the current. A generalised arc voltage model is proposed based on the assumption that a constant sheath voltage and two discrete field regions exist, which are modelled as two independent linear functions of voltage vs. length. The data for various currents is combined to yield a general non-linear function for predicting the arc voltage vs. arc length and current.
Keywords: DC arc model; arc characteristics; arc length; arc image; switching arc (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/23/6377/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/23/6377/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:23:p:6377-:d:455215
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().