Surfactant-Polymer Interactions in a Combined Enhanced Oil Recovery Flooding
Pablo Druetta and
Francesco Picchioni
Additional contact information
Pablo Druetta: Department of Chemical Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
Francesco Picchioni: Department of Chemical Engineering, ENTEG, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
Energies, 2020, vol. 13, issue 24, 1-23
Abstract:
The traditional Enhanced Oil Recovery (EOR) processes allow improving the performance of mature oilfields after waterflooding projects. Chemical EOR processes modify different physical properties of the fluids and/or the rock in order to mobilize the oil that remains trapped. Furthermore, combined processes have been proposed to improve the performance, using the properties and synergy of the chemical agents. This paper presents a novel simulator developed for a combined surfactant/polymer flooding in EOR processes. It studies the flow of a two-phase, five-component system (aqueous and organic phases with water, petroleum, surfactant, polymer and salt) in porous media. Polymer and surfactant together affect each other’s interfacial and rheological properties as well as the adsorption rates. This is known in the industry as Surfactant-Polymer Interaction (SPI). The simulations showed that optimum results occur when both chemical agents are injected overlapped, with the polymer in the first place. This procedure decreases the surfactant’s adsorption rates, rendering higher recovery factors. The presence of the salt as fifth component slightly modifies the adsorption rates of both polymer and surfactant, but its influence on the phase behavior allows increasing the surfactant’s sweep efficiency.
Keywords: EOR; surfactant-polymer; SPI; reservoir simulation; TVD; petroleum (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/24/6520/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/24/6520/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:24:p:6520-:d:459836
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().