EconPapers    
Economics at your fingertips  
 

Nature-Inspired Algorithm Implemented for Stable Radial Basis Function Neural Controller of Electric Drive with Induction Motor

Marcin Kaminski
Additional contact information
Marcin Kaminski: Department of Electrical Machines, Drives and Measurements, Wroclaw University of Science and Technology, Smoluchowskiego 19, 50-372 Wroclaw, Poland

Energies, 2020, vol. 13, issue 24, 1-25

Abstract: The main point of this paper was to perform the design process for and verify the properties of an adaptive neural controller implemented for a real nonlinear object—an electric drive with an Induction Motor (IM). The controller was composed as a parallel combination of the classical Proportional-Integral (PI) structure, and the second part was based on Radial Basis Function Neural Networks (RBFNNs) with the on-line recalculation of the weight layer. The algorithm for the adaptive element of the speed controller contained two parts in parallel. The first of them was dedicated for the main path of the neural network calculations. The second realized the equations of the adaptation law. The stability of the control system was provided according to the Lyapunov theorem. However, one of the main issues described in this work is the optimization of the constant part of the analyzed parallel speed controller. For this purpose, the Grey Wolf Optimizer (GWO) was applied. A deep analysis of the data processing during the calculations of this technique is shown. The implemented controller, based on the theory of neural networks, is an adaptive system that allows precise motor control. It ensures the precise and dynamic response of the electric drive. The theoretical considerations were firstly verified during the simulations. Then, experimental tests were performed (using a dSPACE1103 card and an induction machine with a rated power of 1.1 kW).

Keywords: grey wolf optimizer; parallel controller; radial basis function neural network; speed control; electric drive (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/24/6541/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/24/6541/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:24:p:6541-:d:460426

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6541-:d:460426