Experimental Study of Heat Transfer on the Internal Surfaces of a Double-Wall Structure with Pin Fin Array
Wei Zhang,
Huiren Zhu and
Guangchao Li
Additional contact information
Wei Zhang: School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China
Huiren Zhu: School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China
Guangchao Li: School of Aero-Engine, Shenyang Aerospace University, Shenyang 110136, China
Energies, 2020, vol. 13, issue 24, 1-17
Abstract:
The double-wall structure is one of the most effective cooling techniques used in many engineering applications, such as turbine vane/blade, heat exchangers, etc. Heat transfer on the internal surfaces of a double-wall structure was studied at impinging Reynolds numbers ranging from 1 × 10 4 to 6 × 10 4 using the transient thermochromic liquid crystal (TLC) technique. The two-dimensional distributions of Nusselt numbers and their averaged values were obtained on the impingement surface, target surface and the pin fin surface. The Nusselt number correlations on the surfaces mentioned above were determined as a function of Reynolds number. The results show that the second peak values of the Nusselt number distribution appear on the target surface at all Reynolds numbers studied in this paper for a short distance of the target surface to impingement surface. This phenomenon becomes significant with the further increase of the Reynolds number. The difference between the Nusselt number at the second peak and the stagnation point decreases with the increasing Reynolds number. The maximal Nusselt number regions on the impingement surface appear at the left and right sides of the pin fins between the two impingement holes. The Nusselt numbers of the pin fin surfaces are highly dependent on their various locations in the double-wall structures. The contributions of the impingement surface, pin fin surface and target surface to the overall heat transfer rate are analyzed. The target surface contributed the largest amount of heat transfer rate with a value of about 62%. The heat transfer contribution is from 18% to 21% for the impingement surface and 16% to 18% for the pin fin surfaces within the studied Reynolds numbers.
Keywords: gas turbine; jet impingement; double-wall structure; full-surface temperature measurement; correction of heat transfer coefficient; heat transfer analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/24/6573/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/24/6573/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:24:p:6573-:d:461482
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().