Hybrid DC Converter with Current Sharing and Low Freewheeling Current Loss
Bor-Ren Lin and
Guan-Yi Wu
Additional contact information
Bor-Ren Lin: Department of Electrical Engineering, NYUST (National Yunlin University of Science and Technology), 123, Section 3, University Road, Yunlin 640, Taiwan
Guan-Yi Wu: Department of Electrical Engineering, NYUST (National Yunlin University of Science and Technology), 123, Section 3, University Road, Yunlin 640, Taiwan
Energies, 2020, vol. 13, issue 24, 1-16
Abstract:
A new hybrid high-frequency link pulse-width modulation (PWM) converter using voltage balance capacitor and current balance magnetic coupling is proposed to realize low freewheeling current loss and wide load range of soft switching operation. Series-connected H-bridge converter is adopted for high voltage applications. In addition, a voltage balance capacitor and a current balance magnetic coupling core are employed for achieving voltage and current balance. To extend zero-voltage switching (ZVS) range of switches at lagging-leg of phase-shift PWM converter, soft switching LLC converter is linked to the lagging-leg of phase-shift PWM converter. Therefore, the wide ZVS load operation is realized in the presented hybrid converter. The other high freewheeling current disadvantage in conventional phase-shift PWM converter is improved by a snubber circuit used on low-voltage side. Thus, the primary current during the freewheeling state is decreased and close to zero. In addition, the conduction losses on primary-side components of studied converter are reduced. The secondary-sides of phase-shift PWM converter and LLC resonant converter are series-connected to achieve power transfer between input and output sides. Experimental results using a laboratory prototype are provided to demonstrate the effectiveness of the studied circuit and control algorithm.
Keywords: dc/dc converters; soft switching; hybrid converter; PWM (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/24/6631/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/24/6631/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:24:p:6631-:d:462743
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().