EconPapers    
Economics at your fingertips  
 

The Data-Driven Multi-Step Approach for Dynamic Estimation of Buildings’ Interior Temperature

Stefano Villa and Claudio Sassanelli
Additional contact information
Stefano Villa: Evogy srl, Via Pastrengo 9, 24068 Seriate, Italy
Claudio Sassanelli: Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy

Energies, 2020, vol. 13, issue 24, 1-23

Abstract: Buildings are among the main protagonists of the world’s growing energy consumption, employing up to 45%. Wide efforts have been directed to improve energy saving and reduce environmental impacts to attempt to address the objectives fixed by policymakers in the past years. Meanwhile, new approaches using Machine Learning regression models surged in the modeling and simulation research context. This research develops and proposes an innovative data-driven black box predictive model for estimating in a dynamic way the interior temperature of a building. Therefore, the rationale behind the approach has been chosen based on two steps. First, an investigation of the extant literature on the methods to be considered for tests has been conducted, shrinking the field of investigation to non-recursive multi-step approaches. Second, the results obtained on a pilot case using various Machine Learning regression models in the multi-step approach have been assessed, leading to the choice of the Support Vector Regression model. The prediction mean absolute error on the pilot case is 0.1 ± 0.2 °C when the offset from the prediction instant is 15 min and grows slowly for further future instants, up to 0.3 ± 0.8 °C for a prediction horizon of 8 h. In the end, the advantages and limitations of the new data-driven multi-step approach based on the Support Vector Regression model are provided. Relying only on data related to external weather, interior temperature and calendar, the proposed approach is promising to be applicable to any type of building without needing as input specific geometrical/physical characteristics.

Keywords: Support Vector Regression; Machine Learning; energy and comfort management system; artificial intelligence; multi-step model; data-driven model; simulation; temperature estimation; Industry 4.0; cyber–physical system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/24/6654/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/24/6654/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:24:p:6654-:d:463572

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6654-:d:463572