EconPapers    
Economics at your fingertips  
 

Optimal Control of Wind Turbine Systems via Time-Scale Decomposition

Intessar Al-Iedani and Zoran Gajic
Additional contact information
Intessar Al-Iedani: Electrical and Computer Engineering Department, Rutgers University, New Brunswick, NJ 08901, USA
Zoran Gajic: Electrical and Computer Engineering Department, Rutgers University, New Brunswick, NJ 08901, USA

Energies, 2020, vol. 13, issue 2, 1-22

Abstract: In this paper, we design an optimal controller for a wind turbine (WT) with doubly-fed induction generator (DFIG) by decomposing the algebraic Riccati equation (ARE) of the singularly perturbed wind turbine system into two reduced-order AREs that correspond to the slow and fast time scales. In addition, we derive a mathematical expression to obtain the optimal regulator gains with respect to the optimal pure-slow and pure-fast, reduced-order Kalman filters and linear quadratic Gaussian (LQG) controllers. Using this method allows the design of the linear controllers for slow and fast subsystems independently, thus, achieving complete separation and parallelism in the design process. This solves the corresponding ill-conditioned problem and reduces the complexity that arises when the number of wind turbines integrated to the power system increases. The reduced-order systems are compared to the original full-order system to validate the performance of the proposed method when a wind turbulence and a large-signal disturbance are applied to the system. In addition, we show that the similarity transformation does not preserve the performance index value in case of Kalman filter and the corresponding LQG controller.

Keywords: wind turbine generators; double-fed induction generator; singular perturbation; model order reduction; kalman filter; linear quadratic gaussian controller (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/2/287/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/2/287/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:2:p:287-:d:305887

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:287-:d:305887