Design and Testing of a Low Voltage Solid-State Circuit Breaker for a DC Distribution System
Leslie Tracy and
Praveen Kumar Sekhar
Additional contact information
Leslie Tracy: Electrical Engineering Program, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA
Praveen Kumar Sekhar: Electrical Engineering Program, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA
Energies, 2020, vol. 13, issue 2, 1-13
Abstract:
In this study, a low voltage solid-state circuit breaker (SSCB) was implemented for a DC distribution system using commercially available components. The design process of the high-side static switch was enabled through a voltage bias. Detailed functional testing of the current sensor, high-side switch, thermal ratings, analog to digital conversion (ADC) techniques, and response times of the SSCB was evaluated. The designed SSCB was capable of low-end lighting protection applications and tested at 50 V. A 15 A continuous current rating was obtained, and the minimum response time of the SSCB was nearly 290 times faster than that of conventional AC protection methods. The SSCB was implemented to fill the gap where traditional AC protection schemes have failed. DC distribution systems are capable of extreme faults that can destroy sensitive power electronic equipment. However, continued research and development of the SSCB is helping to revolutionize the power industry and change the current power distribution methods to better utilize clean renewable energy systems.
Keywords: solid-state circuit breaker; microgrid protection; DC protection; SSCB (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/2/338/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/2/338/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:2:p:338-:d:307191
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().