EconPapers    
Economics at your fingertips  
 

Assessing the Techno-Economics and Environmental Attributes of Utility-Scale PV with Battery Energy Storage Systems (PVS) Compared to Conventional Gas Peakers for Providing Firm Capacity in California

Sashwat Roy, Parikhit Sinha and Syed Ismat Shah
Additional contact information
Sashwat Roy: Energy & Environmental Policy Program, University of Delaware, Newark, DE 19711, USA
Parikhit Sinha: First Solar Inc., Tempe, AZ 85281, USA
Syed Ismat Shah: Energy & Environmental Policy Program, University of Delaware, Newark, DE 19711, USA

Energies, 2020, vol. 13, issue 2, 1-24

Abstract: The United States needs to add at least 20 GW of peaking capacity to its grid over the next 10 years, led by large-scale projects in California, Texas and Arizona. Of that, about 60% must be installed between 2023 and 2027, meaning that the energy storage industry has more time to build an economic advantage by lowering costs and improving performance to compete with conventional gas peakers. In this paper, we assess the technical feasibility of utility-scale PV plus battery energy storage (PVS) to provide high capacity factors during summer peak demand periods using a target period capacity factor (TPCF) framework as an alternative to natural gas peakers. Also, a new metric called “Lifetime Cost of Operation” (LCOO) is introduced to provide a metric, focusing on the raw installation and operational costs of PVS technology compared to natural-gas fired peaker plants (simple cycle or conventional combustion turbine) during the target period window. The target period window is the time period during which it is valuable for power plants to provide firm capacity usually during early or late evening peak demand periods in the summer months (from April to September); a framework for which is increasingly being asked for by utilities in recent request for proposals (RFPs). A 50 MW AC PV system with 60 MW/240 MWh battery storage modelled in California can provide >98% capacity factor over a 7–10 p.m. target period with lower LCOO than a conventional combustion turbine natural gas power plant.

Keywords: photovoltaics; battery energy storage systems; target period; capacity factor; lifetime cost of operation; air emissions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/2/488/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/2/488/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:2:p:488-:d:310573

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:488-:d:310573