EconPapers    
Economics at your fingertips  
 

Parametric Performance Analysis and Energy Model Calibration Workflow Integration—A Scalable Approach for Buildings

Massimiliano Manfren and Benedetto Nastasi
Additional contact information
Massimiliano Manfren: Faculty of Engineering and Physical Sciences, University of Southampton, Boldrewood Innovation Campus, Burgess Rd, Southampton SO16 7QF, UK
Benedetto Nastasi: Department of Planning, Design and Technology of Architecture, Sapienza University of Rome, Via Flaminia 72, 00196 Rome, Italy

Energies, 2020, vol. 13, issue 3, 1-14

Abstract: High efficiency paradigms and rigorous normative standards for new and existing buildings are fundamental components of sustainability and energy transitions strategies today. However, optimistic assumptions and simplifications are often considered in the design phase and, even when detailed simulation tools are used, the validation of simulation results remains an issue. Further, empirical evidences indicate that the gap between predicted and measured performance can be quite large owing to different types of errors made in the building life cycle phases. Consequently, the discrepancy between a priori performance assessment and a posteriori measured performance can hinder the development and diffusion of energy efficiency practices, especially considering the investment risk. The approach proposed in the research is rooted on the integration of parametric simulation techniques, adopted in the design phase, and inverse modelling techniques applied in Measurement and Verification (M&V) practice, i.e., model calibration, in the operation phase. The research focuses on the analysis of these technical aspects for a Passive House case study, showing an efficient and transparent way to link design and operation performance analysis, reducing effort in modelling and monitoring. The approach can be used to detect and highlight the impact of critical assumptions in the design phase as well as to guarantee the robustness of energy performance management in the operational phase, providing parametric performance boundaries to ease monitoring process and identification of insights in a simple, robust and scalable way.

Keywords: building performance simulation; parametric modelling; energy management; model calibration; energy efficiency; Passive House (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/3/621/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/3/621/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:3:p:621-:d:315327

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:621-:d:315327